
SPARQL Query Recommendations by Example

Carlo Allocca, Alessandro Adamou, Mathieu d’Aquin, and Enrico Motta

Knowledge Media Institute, The Open University, UK,
{carlo.allocca,alessandro.adamou,mathieu.daquin,enrico.motta}@open.ac.uk

Abstract. In this demo paper, a SPARQL Query Recommendation
Tool (called SQUIRE) based on query reformulation is presented. Based
on three steps, Generalization, Specialization and Evaluation, SQUIRE
implements the logic of reformulating a SPARQL query that is satisfiable
w.r.t a source RDF dataset, into others that are satisfiable w.r.t a target
RDF dataset. In contrast with existing approaches, SQUIRE aims at rec-
ommending queries whose reformulations: i) reflect as much as possible
the same intended meaning, structure, type of results and result size as
the original query and ii) do not require to have a mapping between the
two datasets. Based on a set of criteria to measure the similarity between
the initial query and the recommended ones, SQUIRE demonstrates the
feasibility of the underlying query reformulation process, ranks appropri-
ately the recommended queries, and offers a valuable support for query
recommendations over an unknown and unmapped target RDF dataset,
not only assisting the user in learning the data model and content of an
RDF dataset, but also supporting its use without requiring the user to
have intrinsic knowledge of the data.

1 Introduction

One of the main aspects that characterises Linked Open Data (LOD) is Hetero-
geneity : it is not hard to find RDF datasets that describe overlapping domains
using different vocabularies [11]. A long-standing challenge raised by this state
of affairs is related to the access and retrieval of data. In particular, a com-
mon scenario that is playing a central role to accomplish a number of tasks,
including integration, enriching and comparing data from several RDF datasets,
can be described as follows: given a query Qo (e.g. Select distinct ?mod

?title where { ?mod a ou:Module. ?mod dc:title ?title }1) formulated
w.r.t a source RDF dataset Ds (e.g. Dou= http://data.open.ac.uk/query),
we need to reformulate it w.r.t another similar target RDF dataset Dt (e.g.
Dsu=http://sparql.data.southampton.ac.uk). Achieving this goal usually
involves quite intensive and time consuming ad-hoc pre-processing [12]. In par-
ticular, it requires spending time in exploring and understanding the target RDF
dataset’s data model and content, and then, iteratively reformulating and test-
ing SPARQL queries until the user reaches a query formulation that is right for
his/her needs [3]. Reformulating a query over many RDF datasets can be very
laborious but, if aided by tool support that recognises similarities and provides
prototypical queries that can be tested without the user’s prior knowledge of the

1 Select the names of the modules available at The Open University.



2

dataset, the time and effort could be significantly reduced. In this demo paper,
we propose a novel approach and a tool (called SQUIRE) that, given a SPARQL
query Qo that is satisfiable w.r.t a source RDF dataset (Ds), provides query
recommendations by automatically reformulating Qo into others Qri that are
satisfiable w.r.t a target RDF dataset (Dt). In contrast with existing approaches
(see Section 2), SQUIRE aims at recommending queries whose reformulations:
i) reflect as much as possible the same intended meaning, structure, type of
results and result size as the original query and ii) do not require to have an
ontology mapping and/or instance matching between the datasets. Based on a
set of criteria to measure the similarity between the user-provided query Qo and
the recommended ones Qri , we have prototyped our approach. Demo session at-
tendants will have the opportunity to experiment with SQUIRE over real-world
SPARQL endpoints, thus demonstrating the feasibility of the underlying query
reformulation and query recommendation processes. The paper structure is as
follows: Sec. 2 discusses existing works, Sec. 3 details the SQUIRE’s approach
and its implementation. Finally, Sec. 4 concludes and points out future research.

2 Related Work

To the best of our knowledge, there is no other study investigating SPARQL
query recommendations over unmapped RDF datasets that take user queries
into account. On the contrary, several solutions exist to address the issue of
SPARQL query rewriting for implementing data integration over linked data.
For instance, [7] devised a query rewriting approach that makes full use of
schema mapping, whereas [2] relies on an explicit ontology alignment between
the source Ds and the target Dt. Similarly, [9] described a method for query ap-
proximation where the entities appearing in the query can be generalized w.r.t
an given ontology mapping. Moreover, several systems have been proposed, with
very good achievements, to support users with no knowledge on SPARQL or
RDF to build appropriate queries from scratch. Just to mention a few, Spark-
lis [4], QUICK [12], QueryMed [10] are designed on a query building process that
is based on a guided interactive questions and answers. The authors of RDF-
GL [6] designed a method based on a visual query language where a query can
be viewed in a natural language-like form and in a graphical form. On the same
line, but hiding the SPARQL language syntax, SparqlFilterFlow [5] and SPAR-
QLViz [1] proposed an approach based on visual interface where the queries can
be created entirely with graphical elements. Closer to our goal, [3] aims at al-
leviating the effort of understanding the potential use of an RDF dataset by
automatically extracting relevant natural language questions that could be for-
mulated and executed over it. Although all the above studies were useful for us
as they contribute interesting elements to build on, they are mainly driven by a
context where the user is not familiar with the underlying technologies (which is
not our case) and having in mind the goal that semantic access and retrieval of
data can be made more usable through an appropriate natural language based
systems. In contrast, we are focusing on a method to make SPARQL query rec-
ommendations by reformulating a user query for accessing and retrieving data
from unmapped RDF datasets.



3

3 Method and Implementation

To achieve our goal, SQUIRE proposes and implements a mechanism based on
three steps: Generalization, Specialization and Evaluation. To present each of
them, let us consider the case in which we want to build recommendations for
the example query Qou but w.r.t. the Southampton University RDF dataset
Dsu.

Generalization aims at generalizing the entities (classes, properties, individ-
uals and literals) of Qo that are not present in Dt into variables (marked
as template variables)2. By applying this step, we build what we called the
Generalized Query Template (GQT). Back to the query Qou, the GQT is
obtained from it by turning the entities ou:Module as a class and dc:title

as a datatype property into two template variables, that is ?ct1 and ?dtp1,
respectively. The result is shown in the root node of the tree in Fig. 1.

Specialization aims at specializing consistently the obtained GQT by applying
two main operations: (a) Instantiation (I) instantiates consistently a tem-
plate variable with a corresponding concrete value that belongs to Dt (e.g.
we instantiate ?ct1[?dtp1] over each class [datatype property] of Dsu); and
(b) Removal (R) deletes an entire triple pattern from the Qo’s GQT. We
called the output of this step Specialized Query Tree. Fig. 1 shows a part of
it for Qou.

Evaluation. As a result of the previous two steps, each tree node is considered
to be a reformulated query that is a candidate for recommendation. How-
ever, some of them are more “similar” to the original one than the others.
Thus, the main question was: how can we capture and compute such similar-
ity to provide a score-based ranking? Being in accord with [8] that there is
no universal way of measuring the distance and/or similarities between two
formal queries, we based our approach on a linear combination of the follow-
ing criteria3: (a) Result Type Similarity aiming at measuring the overlap of
the types of results (URI or literal) between Qo and any recommendations
Qri ; (b) Query Result Size Similarity aiming at measuring the result size rate
(normalized w.r.t datasets sizes) between Qo and any recommended one Qri ;
(c) Query Root Distance aiming at measuring the cost of each applied op-
eration from the root node to the one containing the recommended Qri . It
takes into account the distance-based matching of the replaced entities and
the structure (as a set of triple patterns) between Qo and any recommended
Qri ; and (d) Query Specificity Distance aiming at measuring the distance
between Qo and any recommended Qri based on the sets of variables (total
shared variables / total variables).

A screenshot of the implemented tool is shown in Fig 2. Basically, SQUIRE
allows the user to (1) refer to a source RDF dataset, either as an RDF file or as
the URL of a SPARQL endpoint; (2) write down the query Qo w.r.t Ds and (3)

2
It is a query variable that has been consistently indexed with natural numbers and named according to its type.

We used ct, it, opt, dpt and lt, for class, instance, object property, data type property and literal, respectively.

3
The weights are options given to the user to set based on their preferences.



4

specify the target RDF dataset. Once the user clicks on the Recommend but-
ton, SQUIRE executes the method described above and returns a list of scored
recommended queries, sorted high-to-low. Another distinctive characteristic of
SQUIRE is that the recommended queries not only are expressed in terms of the
target dataset, but also are guaranteed to be satisfiable (i.e. the result set is not
empty) and can therefore be used to access and retrieve data from the target
dataset.

Fig. 1. Part of the Specialized Query Tree by applying the two operations.

Fig. 2. SQRT prototype screenshot.



5

4 Conclusion and Discussion

SQUIRE, as an approach and a tool, enables SPARQL query recommendations
by reformulating a user query that is satisfiable w.r.t a source RDF dataset Ds,
into others that are satisfiable w.r.t a target (and unmapped) RDF dataset Dt.
One of the advantages of SQUIRE is that not only it helps learning the data
model and content of a dataset, which usually requires a huge initial effort, but
also enhances their use straightforwardly without the user’s prior knowledge.
Indeed, the problem is not fully solved. One of the aspects we have planned
to investigate is the case where the reformulation is based on other types of
operations (e.g. adding a triple pattern, or more generally replacing a graph
pattern with another one, and so on). Moreover, we want to extend this work
in such a way that covers, apart from SELECT (which is the main focus here),
other types of queries such as DESCRIBE, CONSTRUCT and ASK. Finally,
we believe that the outcomes of research on SPARQL query profiling can be
combined with ours to improve the corresponding approaches.

Acknowledgements. This work was supported by the MK:Smart project (OU Ref-

erence HGCK B4466).

References

1. J. Borsje and H. Embregts. Graphical Query Composition and Natural Language
Processing in an RDF Visualization Interface. E.S. of E. and B.,Univ.,Rott., 2006.

2. G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt. SPARQL
Query Rewriting for Implementing Data Integration over Linked Data. In Pro-
ceedings of the 2010 EDBT/ICDT Workshops, EDBT ’10, NY, USA, 2010. ACM.

3. M. d’Aquin and E. Motta. Extracting Relevant Questions to an RDF Dataset
Using Formal Concept Analysis. In Proc. of the 6th K-CAP, USA, 2011.

4. S. Ferre. Sparklis: An Expressive Query Builder for SPARQL Endpoints with
Guidance in Natural Language. Sem. Web: Inter., Usab., App., 2016. To appear.

5. F. Haag, S. Lohmann, and T. Ertl. SparqlFilterFlow: SPARQL Query Composition
for Everyone. In 11th ESWC 2014, May 2014.

6. F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-GL: a SPARQL-
based graphical query language for RDF. In Em. Web Intel.: Adv. Info. Re. 2010.

7. K. Makris, N. Bikakis, N. Gioldasis, C. Tsinaraki, and S. Christodoulakis. Towards
a Mediator Based on OWL and SPARQL. In Proc. of the 2Nd, WSKS ’09, 2009.

8. F. Picalausa and S. Vansummeren. What Are Real SPARQL Queries Like? In
Proceedings of, SWIM ’11, pages 7:1–7:6, New York, NY, USA, 2011. ACM.

9. B. R. K. Reddy and P. S. Kumar. Efficient approximate SPARQL querying of Web
of Linked Data. In URSW, CEUR Workshop Proc. CEUR-WS.org, 2010.

10. O. Seneviratne. QueryMed: An Intuitive SPARQL Query Builder for Biomedical
RDF Data, 2010.

11. Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis, P. Fafalios, M. Doerr, N. Mi-
nadakis, T. Patkos, and L. Candela. Integrating Heterogeneous and Distributed
Information about Marine Species through a Top Level Ontology. In MTSR’13.

12. G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From Keywords to
Semantic queries-Incremental Query Construction on the Semantic Web. Web
Sem., 7(3):166–176, September 2009.


